Cover page

Proceedings of the 5th International Conference on Engineering and MIS 2019

L.N.Gumilyov Eurasian National University, Astana (Nur Sultan), Kazakhstan

ICEMIS'19

Conference Chair: Prof. Y. B. Sydykov

TPC Chair: Prof. Shadi A. Aljawarneh

Organization Chairs: Prof. Sharipbay Altynbek & Dr. Gulmira Bekmanova

Sponsor: International Association of Researchers (IARES Inc., Canada)

The 5th ACM International Conference on Engineering and MIS 2019 Proceedings Series ACM ISBN: 978-1-4503-7212-1

ACM Press

Content page

23	27	Detecting Black Hole Attacks in MANET using Relieff classification algorithm	Firas Albalas;Muneer Bani Yassein;Assma Nassar
24	28	PROBLEMS OF DETECTING FUZZY DUBLICATES	Saule Brimzhanova;Sabyrzhan Atanov;Khuralay Moldamurat;Kalmanova D.M.;Tabys T.
25	29	RESCALED RANGE ANALYSIS FOR THE SOCIAL NETWORKS	Aidana Akhmetova;Lira La;Fedor Murzin
26	30	A Recent Survey on Challenges in Security and Privacy in Internet of Things	Shadi Aljawameh;Vangipuram Radhakrishna;Gunupudi Rajesh kumar
27	31	NIRNAYAM - FUSION OF ITERATIVE RULE BASED DECISIONS TO BUILD DECISION TREES FOR EFFICIENT CLASSIFICATION	Shadi Aljawameh;Vangipuram Radhakrishna;Aravind Cheruvu
28	32	Discovery of Time Profiled Temporal Patterns	Vangipuram Radhakrishna;Shadi Aljawarneh;P.V.Kumar, Vinjamuri Janaki, Aravind Cheruvu
29	33	Similarity function for intrusion detection	Gunupudi Rajesh Kumar;Nimmala Mangathayaru;Gugulothu Narasimha
30	34	A novel approach for unsupervised learning of software components	Chintakindi Srinivas;C.V.Guru Rao

First page

Discovery of Time Profiled Temporal Patterns

Vangipuram Radhakrishna Information Technology Dept VNR VJIET HYDERABAD, INDIA radhakrishna_v@vnrvjiet.in

Shadi Aljawarneh Software Engg Dept JUST Jordan saaljawarneh@just.edu.jo

Vinjamuri Janaki Computer Science and Engg Dept Vaagdevi College of Engineering Warangal, INDIA janakicse@yahoo.com

P.V.Kumar Computer Science and Engg Dept. Acharya Institute of Technology Bangalore, INDIA pvkumar58@gmail.com

Aravind Cheruvu Information Technology Dept VNR VJIET HYDERABAD, INDIA aravindcheruvu1995@gmail.com

ABSTRACT

Finding temporal association patterns from temporal dataset is addressed in a wider perspective in the existing literature. Discovering time profiled temporal patterns is addressed in our previous research works which includes proposing new support estimation acchniques, similarity measures for computing similarity between temporal patterns. Most measures proposed in our previous research are for Gaussian space. Our previous research proposed z-space dissimilarity measures SRIIIASS and KRISHNA SUDARSANA. Following these two measures, there have been no z-space measures that are proposed in literature. This paper proposes a new similarity measure for determining similarity between temporal patterns in z-space.

General Terms

Novel approach, Competational Complexity

Keywords

Z-score, support, temporal pattern, similarity computation

1. INTRODUCTION

This research extends our previous research [3, 12, 19-25] by proposing a new distance measure to find distance between patterns in z-space. The aim of this research is to propose a new distance measure for z-space similarity computation. For this, we have to map the distance value to z-space. To achieve this, we use the concept of z-score and z-score probability. Since, the measure is designed by using Gaussian membership function therefore it is required to mention the deviation value for distance computation. This research also propose a new computation expression for

Permission to make digital or hard copies of all or part of this work for personal or classion are is granted without for pervided that copies are net made or dombined for profit or commercial alreatage and that copies hear made of destructed for public or constrained advances on the course of this notice and the full entation on the finit page. To copy otherwise, or regulithic to good on arrow as to reductivate to link, requires parameter permission and or a fire. Required permissions from Pressources (parameter and the second N'E 105 TV June 6-8, 2019, Aslana, Kasakholan, Copyright is held by the owner arthon is Publication rights barrand in ACM ACM ISBN 978-1-4503-7212-1/1906 \$15.00 https://doi.org/10.1145/3330431.3330459

determining deviation value from the Lp-space threshold mentioned by user. We also propose an expression for mapping distance threshold to 2-space. This distance threshold mapped for z-space is used to compare the patterns for similarity.

2. PROPOSED MEASURE

Consider temporal items, T_{μ} and T_{μ} and the corresponding support time sequences denoted by T_{μ} and T_{μ} . Then, the support values of temporal patterns, T_{μ} and T_{μ} at the k^{th} timeslot are denoted by T_{θ_k} and T_{θ_k} . The support sequences for 'm' time slots are m-tuple denoted as $\overline{T_{P}} = (T_{P_{1}}, T_{P_{2}}, T_{P_{2}}, \dots, T_{P_{m}})$ and $\overline{T_{q}} = (T_{q_{1}}, T_{q_{2}})$

2.1 Z-score sequence of temporal pattern

The z-score of a temporal pattern, T_{μ} w.r.t reference, R_{μ} is given by equation (1) where, σ^{μ} denotes the standard deviation obtained using equation (10) for a given dissimilarity measure.

$$Z(T_{P_k}) = \frac{(T_{P_k} - R_{P_k})}{\sigma^2}$$

(1)

The z-score value of a temporal pattern T, at k* time slot is denoted as, $Z(T_{P_{2}})$ and the z-score sequence considering 'm' time slots is represented as given by equation (2)

$$Z(T_{p_1}) = (Z(T_{p_1}), Z(T_{p_1}), Z(T_{p_1}), ..., Z(T_{p_m}))$$
 (2)

The z-scow probability of temporal pattern is written as, $P[Z(T_{P_n}))$ and the probability sequence considering 'm' time slots is represented by equation (3)

$$P(Z(T_p)) =$$

$$(P(Z(T_{P_1})), P(Z(T_{P_1})), P(Z(T_{P_1})), \dots, P(Z(T_{P_m})))$$
 (

Also, the z-score value of reference to itself is always zero and hence the corresponding z-score sequence is a sequence consisting only zeros.